ATP-dependent chromatin remodeling and histone acetyltransferases in 5-FU cytotoxicity in Saccharomyces cerevisiae.

نویسندگان

  • R Matuo
  • F G Sousa
  • D Bonatto
  • A A Mielniczki-Pereira
  • J Saffi
  • D G Soares
  • A E Escargueil
  • A K Larsen
  • J A P Henriques
چکیده

Chromatin is thought to modulate access of repair proteins to DNA lesions, and may be altered by chromatin remodelers to facilitate repair. We investigated the participation of chromatin remodelers and DNA repair in 5-fluorouracil (5-FU) cytotoxicity in Saccharomyces cerevisiae. 5-FU is an antineoplastic drug commonly used in clinical settings. Among the several strains tested, only those with deficiencies in ATP-dependent chromatin remodeling (CR) and some histone acetyltransferases (HAT) exhibited sensitivity to 5-FU. CR and HAT double-mutants exhibited increased resistance to 5-FU in comparison to the wild-type mutant, but were still arrested in G2/M, as were the sensitive strains. The participation of Htz1p in 5-FU toxicity was also evaluated in single- and double-mutants of CR and HAT; the most significant effect was on cell cycle distribution. 5-FU lesions are repaired by different DNA repair machineries, including homologous recombination (HR) and post-replication repair (PRR). We investigated the role of CR and HAT in these DNA repair pathways. Deficiencies in Nhp10 and CR combined with deficiencies in HR or PRR increased 5-FU sensitivity; however, combined deficiencies of HAT, HR, and PRR did not. CRs are directly recruited to DNA damage and lead to chromatin relaxation, which facilitates access of HR and PRR proteins to 5-FU lesions. Combined deficiencies in HAT with defects in HR and PRR did not potentiate 5-FU cytotoxicity, possibly because they function in a common pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Role for Chromatin Remodeling Enzymes in Mitotic Gene Expression

Regulation of eukaryotic gene expression requires ATP-dependent chromatin remodeling enzymes, such as SWI/SNF, and histone acetyltransferases, such as Gcn5p. Here we show that SWI/SNF remodeling controls recruitment of Gcn5p HAT activity to many genes in late mitosis and that these chromatin remodeling enzymes play a role in regulating mitotic exit. In contrast, interphase expression of GAL1, H...

متن کامل

Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot.

Histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling factors (ADCRs) are involved in selective gene regulation via modulation of local chromatin configuration. Activation of the recombination hotspot ade6-M26 of Schizosaccharomyces pombe is mediated by a cAMP responsive element (CRE)-like sequence, M26, and a heterodimeric ATF/CREB transcription factor, Atf1.Pcr1. Chromatin ...

متن کامل

Tension-dependent nucleosome remodeling at the pericentromere in yeast

Nucleosome positioning is important for the structural integrity of chromosomes. During metaphase the mitotic spindle exerts physical force on pericentromeric chromatin. The cell must adjust the pericentromeric chromatin to accommodate the changing tension resulting from microtubule dynamics to maintain a stable metaphase spindle. Here we examine the effects of spindle-based tension on nucleoso...

متن کامل

Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae.

We have identified and characterized two Imitation Switch genes in Saccharomyces cerevisiae, ISW1 and ISW2, which are highly related to Drosophila ISWI, encoding the putative ATPase subunit of three ATP-dependent chromatin remodeling factors. Purification of ISW1p reveals a four-subunit complex with nucleosome-stimulated ATPase activity, as well as ATP-dependent nucleosome disruption and spacin...

متن کامل

The essential function of Swc4p - a protein shared by two chromatin-modifying complexes of the yeast Saccharomyces cerevisiae - resides within its N-terminal part.

The Swc4p protein, encoded by an essential gene, is shared by two chromatin-remodeling complexes in Saccharomyces cerevisiae cells: NuA4 (nucleosome acetyltransferase of H4) and SWR1. The SWR1 complex catalyzes ATP-dependent exchange of the nucleosomal histone H2A for H2AZ (Htz1p). The activity of NuA4 is responsible mainly for the acetylation of the H4 histone but also for the acetylation of H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2013